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ABSRTRACT 

 
 Game playing in Artificial Intelligence 

(AI) has resulted in effective algorithms for 

playing two-person, zero sum, perfect 

information, non-cooperative games.  Game 

theory has been too theoretical to apply directly 

to the play of games with more than two players.  

In this presentation, a function for representing a 

game is suggested, the stability of a coalition is 

defined, and an algorithm is developed for play 

of an n-person, perfect information, cooperative 

game by a computer. This work is based on the 

max
n
 evaluation for n-person, perfect 

information, non-cooperative games [LuI86]. 

 

INTRODUCTION 

 

 From the rules or definition of a game, 

the game tree representation can be specified for 

an n-person game be a tree where [Jon80]: 

 

(1) The root node represents the initial 

state of the game; 

(2) A node is a state of the game with 

the player whose move is attached 

to it; 

(3) Transitions represent possible 

moves a player can make to the 

next possible states; and  

(4) Outcomes are the payoff 

assignments associated with each 

terminal node, which and n-tuples 

where the i
th

 entry is paid to player 

i. 

 

Because most games of interest have 

combinatorially explosive game trees, AI 

programs tend to analyze partial game trees in 

order to determine a best move.  An evaluation 

function is a function which estimates what 

resulting value the game should have when given 

a terminal node of a partial game tree.  Then by 

the look ahead procedure, values are backed up 

from the terminal nodes to each node of the tree 

according to the minimax searching method 

[Ric83]: 

 

(1) At the program’s move, the node 

gets the maximum value of its 

children; and 

(2) At the opponent’s move, the node 

gets the minimum value of its 

children. 

 

The value that is backed up to the root node is 

the value of the game, and the move taken 

should be to a node that has that value as its 

backed up value.   

 

 Game theory solutions to non-

cooperative games are usually a set of strategies 

for each player that are in some sense optimal, 

where the player can expect the best outcome 

given the constraints of the game and assuming 

the other players are attempting to maximize 

their own payoffs.  A solution for an n-person, 

perfect information game is a vector which 

consists of a strategy for each play (s1. . . . . . . 

sn).  A strategy defines for the player what move 

to make for any possible game states for the 

player.  Call the set of possible categories for 

player i, Pi, and the payoff to player i, Ui.  Ui is a 

real valued function on a set of strategies, one for 

each player.  The set {P1. . . . . . . .Pn; U1. . . . . 

Un} is called the normal form of a game [Jon80]. 

 

MAX
N
  

 

 If we have rational players who are 

trying to maximize their own payoffs, the backed 

up values should be the maximum for each 

player at each player’s turn.  We call this 

procedure max
n
.  The max

n
 procedure, 

maxn(node), is recursively defined as follows: 

 

(1) For a terminal node, maxn(node) = 

payoff vector for node 
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(2) Given node is a move for player i, 

and (v1j, . . . , vnj) is maxn(j
th

 child 

of node), then maxn(node) = (v1, . . 

. . vn), which is the vector where vi 

= maxj vij. 

 

Calling the procedure with the root node finds 

the max
n
 value for the game and determines a 

strategy for each player, including a move for the 

first player.  This procedure can be used with a 

look ahead where a terminal node in the 

definition above becomes a terminal node in the 

look ahead.  Fro example, given the payoff 

vectors on the bottom row, by the procedure, A 

should take the move represented in Figure 1 by 

the left child: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Max
n 
 example 

 

Given a non-cooperative n-person game in the 

tree for, the vector values associated with each 

terminal node represent the payoff to each of the 

n players if that node is the result of playing the 

game.  For a node or game situation, the max
n
 

procedure determines a strategy for each player, 

a move for the current player to use, and an 

equilibrium point for the game for the current 

node [LuI86].  The procedure backs up from the 

terminal nodes the vectors that give the player pf 

the parent node the most payoff.  This is repeated 

up the tree until the root node has a vector value 

associated with it and a child to choose for the 

move to make from the root node. 

 

A COOPERATIVE GAME FUNCTION 

 

 A cooperative game is one in which 

communication and coalition formation is 

allowed between players.  A coalition is a subset 

of the n players such that a binding agreement 

exists between the players.  The coalition can be 

treated as one player with a strategy, which is 

collectively determined.  When is a player’s turn 

who is in the coalition, it is the coalition’s move.  

A coalition structure on an n-person game {P1, . 

. . , Pn; U1, . . . , Un} is a partition of {1, . . . , n}. 

 

 For a cooperative game, a set of players, 

which is a coalition if they cooperating with each 

other, can be treated as one player in the max
n
 

procedure by summoning the payoffs of the 

players.  Max
n
 can be applied to the structure 

such that each coalition represents a player.  

Applying max
n
 to all possible coalition 

structures, the minimum payoff in the resulting 

payoff vectors for all structures containing that 

coalition.  This includes a minimum payoff for 

each individual player.  By subtracting the sum 

of the individual minimum payoffs of the players 

that make up the coalition from the minimum 

payoff for a coalition, the profit for the coalition 

is calculated.  This profit is notated by m© for 

coalition c.  These concepts are defined formally 

below. 

 

Definition 1: 

 

Let M(c|S) be the payoff to coalition    C є S 
when the maxn  procedure is applied to a 
game with coalition structure S. 
 

M(c|S) =  Ui (S1…….,Sn) where the Si  are 
the strategies determined by maxn. 
 
Definition 2: 

 

 The minimum expected payoff (mep) 

for a coalition is given by 

 

 Mep(c) = min M(c|S) where c є S. 
 

Definition 3: 

 

 For any coalition c, let 

M(c ) = mep(c ) -  mep(i). 
 

 

An interesting property of this function, which 

will be proved next, is that for disjoint coalitions 

a and b, m(ab)  m(a) + m(b), where ab is the 

union of a and b [also, if a function f(x) satisfies 

this inequality, then there exists a game such that 

f(c) = m(c) for every coalition, which implies 

that the inequality is the only restriction on 

m(c)].  A game can be represented by this m-

function. 

A1  (1.1.1) 

A2  (1.1.1) A3  (1.1.1) A4  (1.1.1) 

A3 A3 A3 A3 A3 A3 

  (1.1.1)   (1.0.8)   (0.4.1)   (0.0.14)   (0.1.16)   (0.0.14) 
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Lemma 1*: 
 

M[ab|(ab)US]  >=  M[a|(a)(b)US] +  M[b|(a)(b)US] 

 

where S is a substructure containing all other 

players besides those in coalitions a and b. 

 

Proof:  

 

 Let a consist of players (a1, . . . , ai) and 

b consists of players (b1,. . . , bj).  Max
n
 on 

(a)(b)S determines strategies α, β r for a, b, 
and S respectively. Max n  on (ab)US finds 
the best that a and b can do together , that is, 

for  є Pa X P b where Pa  = Pa1 X … X Pai and 
Pb X…. X Pbj. 

 

M[ab|(ab)US]  = max [ Ua   ( ,r)  + Ub( ,r)] 

  

          Ua (α, β r) + Ub(α, β r) 
 

          M[ab|(ab)US]  + M[b|(a)(b)US] 

 

where Ua (v) = Ua1 (v)b + ……+ Uai (v)b and 

Ub(v) = Ub1(v) + …. + Ubj(v) for a vector v 

which consists of strategies for all the players. 

 

 

Theorem 1: 

 

 For disjoint coalitions a and b, 

 

  mep(ab)  mep(a) + mep(b). 

 

Proof: 

 

 For coalition structure S where ab  S, 

mep(ab) = minsM(abS) = M(abS’) for some 

structure S’ = {ab}T.  Assume that the theorem 

is false.  Then mep(ab)  mep(a) + mep(b).  

Since mep(a) and mep(b) are minimums, letting 

R = {a}{b}T, the structure with a and b 

playing separately, then 

 

 M(aR)  mep(a) and M(bR)   mep(b). 

 

 So, mep(ab)  M(aR) + M(bR) and 

M(abS’)  M(aR) + M(bR).  But S’ = {ab}T 

and R = {a}{b}T, which contradicts Lemma 1.  

This proves the theorem.   

 

 From this theorem we know that  

 

for all coalition structures S.  This means that the 

grand coalition achieves the most overall payoff, 

and there may be other structures that also 

achieve this maximum sum of payoffs.  We also 

can deduce that is mep(1, . . . , n) =   mep(i), then 

mep(ab) = mep(a) + mep(b) for all coalitions a 

and b where a   .  By subtracting indiviual mep(i) 

values for i in a and b from the inequality in 

Theorem 1, m(ab)  m(a) + m(b).  Also, m(1, . . . 

n)   m(c) for any structure S.   

 

EARNINGS AND STABILITY  

 

 Given a game in m-function form, a 

division of the profits to each player is defined 

based on increasing coalition size and is called 

the earnings for each player.  We use Definition 

4 in a recursive definition for E(i,c) to simplify 

the notation.   

 

Definition 4: 

 

 For player i and coalition c, let f(i,c) =   

E(i,c), for all coalitions c’ where i  c’. 

 

Definition 5: 

 

 The earnings for player i in coalition c 

are given recursively as, 

 

 

     

    If  |c| = 1.   0 

E(i.c) = {if |c| > 1.f(I,c) +m(c ) -  f(j,c)

          |c| 

 

 

for the example game tree. 

 

Coalition  mep(c )  m(c ) E(I . c) 

a  1 0 (0) 

b  1 0 (0) 

c  1 0 (0) 

ab  4 2 (1,1) 

ac  6 4 (2,2) 

bc  8 6 (3,3) 

abc  14 11 (3,4,4) 
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If, for each player in the coalition, the player’s 

earnings are the maximum earnings over all 

coalitions which contain that player, the coalition 

is defined to be stable.  A structure is stable if 

each coalition in the structure is stable.  In the 

example, the coalition and structure (a,b,c) is 

stable.  Some properties of these functions are: 

(1) if a structure is stable for a game, then any 

coarser structure is also stable; (2) every game 

has at least one stable coalition; and (3) if a 

coalition is stable, there is no coalition of equal 

or larger size which is a threat to the stability of 

the coalition.  These properties are discussed in 

greater detail below. 

 

 In order to analyze the process of 

calculating earnings, the following definitions 

will be useful. 

 

Definition 6: 

 

 The level of a coalition, c, is equal to 

the cardinality of the coalition, c =  

 

 The total profit P(i) can be thought of as 

being accumulater at various levels of coalitions.  

From one level l to the next, l + 1, either a 

player’s profit is increased by the maximum 

equally distributed coalition profit or it is not 

increased at all, but it does not decrease.  This 

monotone non-decreasing function is defined 

next. 

 

Definition 7: 

 

 The profit at level l for player a is 

defined recursively as  

 

 

 

P1(a) = max { P1- 1(a), max E[a.cl(a)] } 
 

 

Where P1(a) = 0. 

 

 Before a solution algorithm is defined, 

some concepts are proven in order to support a 

procedure based on stability. 

 

Definition 8: 

 

 A coalition cm is c –stable if, for all 

players i  cm .  P (i) = E(i,cm ) where m  . 

 

Theorem 2: 

 

For any n-person game, for each level = 1…..n, 

there exists a coalition that is c –stable. 

 

Proof: 

 

 For k=1 this is trivially true, since 

P1(i)=0 for all players. Assume it is true for k, so 

there is a coalition c that is ck-stable.  We need to 

show that there is a coalition ck+1-stable.  We 

know the E(i,c) = Pk(i) for i  c. 

 

 Case 1:  m(ck+1) -  Pk(i)  0 for all 

ck+1 .  This difference is the profit at level k + 1 

that is distributed to i  ck+1, so c must be ck+1-

stable. 

 

 Case 2:  There exists a c΄ at the k + 1 

level such that m(c΄) -  Pk(i)  0 and is 

maximum over all ck+1.  So, each player i  c΄ 
receives a profit above Pk(i) that is more than in 

any other ck+1.  Then each of the players i  c΄ 
gets Pk+1(i) and c΄ is ck+1-stable. 

 

Corollary 1: 

 For any n-person game there is at least 

one stable coalition. 

 

Proof: 

 Take Theorem 2 with  = n. 

 

 Theorem 3 states that for a stable 

coalition t and any coalition u where u has at 

least as many players as t, t u = v and v is not 

empty, then the players in u cannot offer to the 

players in v more than they can get in t without 

going below what the players in u – v could get 

in a smaller coalition. Therefore, there is no 

coalition of equal or greater size than that of a 

stable coalition, which is a threat to the stability. 

 

 We use the following conventions 

 

Definition 9:  

 

 For coalitions c΄ and c where  , let the 

earnings for coalition c΄ be E(c΄,c) =  E(i,c) and 

the profit at level  for coalition c be  

 

Theorem 3: 

 

 It t is stable, then for  
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Proof: 

 

 Case 1:  u  t 

        The inequality can be rewritten as 

E(v,t) + E(t - v,t) – P (t - v)  E(v,u) 

  + E(u – v,u) – Pu-1(u – v). 

Since t is stable,  

 E(v,t) = P(i)  E(v,u). 

Therefore, what needs to be shown is  

E(t – v,t) – P u-1 (t – v)  

        E(u – v,u) –P u-1 (t-v). 

 

Since t is stable and P is increasing, E(t – v,t) = 

Pn(t – v)  P u-1 (t – v).  Therefore,  

E(t – v.t) – Pt! - 1 (t – v)  0. If E (u – v.u) –  

Pu!-1(u – v)  0, then the inequality is true. By 

definition.  

  

E(u - v.u)  =  Pu!-1(u – v) + |u – v| . m(u) – Pu!-1(u) 

          |u| 

 

If A = m(u) – Pu!-1(u)      0, then E(u - v.u)    

         |u| 

 

Pu!-1(u – v). if A > 0,  

then E(v,u) = Pu!-1 (v) + |v|. A 

  

But E(v,t)  = Pn
 
(v)  = Pv = Pu!-1(v) since t is 

stable and |t|  |u| -1, so that E(v,t)  E(v,u) 

which is a contradiction since t is stable. So, A  

0 and E(u - v.u)  - Pu!-1(u – v)  0 and the 

theorem is true for this case. 

  

 Case 2 : |u| = |t| = k. 

 

For i є v, since t is stable, E (i, t)  E(i, u). By the 

definition of earnings and substituting k and k -1 

where possible.  

 

Pk-1(i) + m(t) – Pk-1(t)   Pk-1(i) + m(u) – Pk-1(u)   

       k       k 

Therefore, m(t) – Pk-1(t)  m(u) - Pk-1(u). Adding 

Pk-1(v) to both sides gives m(t) – [Pk-1(t) - Pk-1(v)] 

 m(u) - [Pk-1(u) - Pk-1(v)]. 

 

Since Pl(a-b) = Pl(a) - Pl(b) from the definition of 

Pl. 

m(t) - Pk-1(t – v)   m(u) -  Pk-1(u– v). 

Therefore m(t) – Pt-1(t – v)   m(u) -  Pu-1(u– v). 

 

 

 

 

 

SOLUTION   ALGORITHM 

 

 From this sense of stability a solution 

algorithm is now defined for cooperative n-

person games. The algorithm begins with a game 

in m-function form and produces a coalition 

structure and payoff vector.  

 

Solution Algorithm:  

 

(1) If a stable structure exists, then any 

minimum solution structure and the 

corresponding payoff vector comprise 

the solution. 

(2) If there is not a stable structure, then 

take all stable coalitions and form a 

substructure of these players as follows. 

If a subset of the stable coalitions is a 

partition of another stable coalition, 

then delete the largest coalition from the 

stable coalition set for the rest of the 

calculation. 

a. If a stable coalition c has no 

players in common with the 

other stable coalitions, then the 

substructure contains c with its 

respective payoffs. 

b. For each set of coalitions {c1, 

…, cm} that has any players in 

common, the union of these 

players is a new coalition c in 

the substructure with the 

folloing pay: 

Let c
1
 = 

m

j 1

cj and c
2
= 

m

j 1

cj – c
1
 

For i є c
1
, i receives P(i) = max E(i, 

c), otherwise a player i receives  

 

 

 

.    ri        _ m(c)  -  1
)(

cj
jP


           

    1
)(

cj
jr


 

 

  Where rk = P(k) . vk  where vk is the  

   m 

number of stable conditions in which k is 

contained. So 1  vk < m. 

(3) If all players are not yet acconted for, 

apply the above two steps to the 

subgame with the remaining players, 

calculation new payoff values. Repeat 

this until all players have payoffs. 

 
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(4) If the resulting combined substructures 

do not have a sum of payoffs equal to 

m(1, ….., n) then let the final solution 

structure be {1,….,n} with additional 

payoff evenly distributed among the 

players. Otherwise, the solution is the 

combined substructures and associated 

payoffs defined above. 

 

For the example, the solution algorithm 

gives {(a, b, c); (2,4,4)} since (a,b,c) is 

stable. 

 

Coalition m(c) E(I,c) 

a 0 (0) 

b 0 (0) 

c 0 (0) 

d 0 (0) 

ab 3 (1.5,1.5) 

ac 4 (2,2) 

ad 5 (2.5, 2.5) 

bc 6 (3,3) 

bd 7 (3.5, 3.5) 

cd 8 (4,4) 

abc 10 (2.5, 3.5, 4) 

abd 7 (1.5, 2.5, 3) 

acd 9 (2, 3.5, 3.5) 

bcd 8.5 (2.5, 3, 3) 

abcd 12 (2,3, 3.5, 3.5) 

 

 

(cd) and (abc) are the stable coalitions. The 

solution is the union of these two coalitions 

with payoffs calculated in 2b. {(abcd); 

(2.2.8, 4, 3.2)}. 

 

CONCLUSIONS 

 

The solution algorithm’s largest asset is that 

it works and can be applied to the actual 

play of a game. This is not true of most 

other game theoretic solutions. This solution 

is supported by the properties of stability 

and by comparisons to game theoretic 

concepts. In its favor is that the solution 

from the algorithm is contained in many of 

the game theoretic solution sets such as the 

core and stable set, and sometimes in the 

bargaining set and kernel (see [LuR57] for 

definitions). The solution algorithm is 

definite and gives a precise solution; it is not 

necessary to search through a large solution 

space. 

 

The solution algorithm is based on the 

assumption that each player will agree to an 

equal distribution of profit for the coalition. 

The algorithm can be directly applied to a 

game or a game with an evaluation function 

applied at any level of the game tree. The 

solution algorithm can be taken advantage of 

by a singular player, such as a computer, to 

decide on individual play and to make 

recommendations to other players. In 

calculating the solution, an overall or global 

point of view is adopted, with each player 

achieving his or her best possible result so 

that everyone might win.  

 The results in this work have 

implications for and can be applied to areas 

in AI, mathematics, economics, social 

psychology, and conflict resolution. 
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