
Proceedings of AAAI Symposium on Computer Game Playing, AAAI Spring Symposium,

Stanford University, March 1988

A COOPERATIVE N-PERSON GAME SOLUTION

Carol A. Luckhardt

Southwest Research Institute

San Antonio, TX 78284

ABSRTRACT

 Game playing in Artificial Intelligence

(AI) has resulted in effective algorithms for

playing two-person, zero sum, perfect

information, non-cooperative games. Game

theory has been too theoretical to apply directly

to the play of games with more than two players.

In this presentation, a function for representing a

game is suggested, the stability of a coalition is

defined, and an algorithm is developed for play

of an n-person, perfect information, cooperative

game by a computer. This work is based on the

max
n
 evaluation for n-person, perfect

information, non-cooperative games [LuI86].

INTRODUCTION

 From the rules or definition of a game,

the game tree representation can be specified for

an n-person game be a tree where [Jon80]:

(1) The root node represents the initial

state of the game;

(2) A node is a state of the game with

the player whose move is attached

to it;

(3) Transitions represent possible

moves a player can make to the

next possible states; and

(4) Outcomes are the payoff

assignments associated with each

terminal node, which and n-tuples

where the i
th

 entry is paid to player

i.

Because most games of interest have

combinatorially explosive game trees, AI

programs tend to analyze partial game trees in

order to determine a best move. An evaluation

function is a function which estimates what

resulting value the game should have when given

a terminal node of a partial game tree. Then by

the look ahead procedure, values are backed up

from the terminal nodes to each node of the tree

according to the minimax searching method

[Ric83]:

(1) At the program’s move, the node

gets the maximum value of its

children; and

(2) At the opponent’s move, the node

gets the minimum value of its

children.

The value that is backed up to the root node is

the value of the game, and the move taken

should be to a node that has that value as its

backed up value.

 Game theory solutions to non-

cooperative games are usually a set of strategies

for each player that are in some sense optimal,

where the player can expect the best outcome

given the constraints of the game and assuming

the other players are attempting to maximize

their own payoffs. A solution for an n-person,

perfect information game is a vector which

consists of a strategy for each play (s1.

sn). A strategy defines for the player what move

to make for any possible game states for the

player. Call the set of possible categories for

player i, Pi, and the payoff to player i, Ui. Ui is a

real valued function on a set of strategies, one for

each player. The set {P1.Pn; U1.

Un} is called the normal form of a game [Jon80].

MAX
N

 If we have rational players who are

trying to maximize their own payoffs, the backed

up values should be the maximum for each

player at each player’s turn. We call this

procedure max
n
. The max

n
 procedure,

maxn(node), is recursively defined as follows:

(1) For a terminal node, maxn(node) =

payoff vector for node

Proceedings of AAAI Symposium on Computer Game Playing, AAAI Spring Symposium,

Stanford University, March 1988

(2) Given node is a move for player i,

and (v1j, . . . , vnj) is maxn(j
th

 child

of node), then maxn(node) = (v1, . .

. . vn), which is the vector where vi

= maxj vij.

Calling the procedure with the root node finds

the max
n
 value for the game and determines a

strategy for each player, including a move for the

first player. This procedure can be used with a

look ahead where a terminal node in the

definition above becomes a terminal node in the

look ahead. Fro example, given the payoff

vectors on the bottom row, by the procedure, A

should take the move represented in Figure 1 by

the left child:

Figure 1. Max
n
 example

Given a non-cooperative n-person game in the

tree for, the vector values associated with each

terminal node represent the payoff to each of the

n players if that node is the result of playing the

game. For a node or game situation, the max
n

procedure determines a strategy for each player,

a move for the current player to use, and an

equilibrium point for the game for the current

node [LuI86]. The procedure backs up from the

terminal nodes the vectors that give the player pf

the parent node the most payoff. This is repeated

up the tree until the root node has a vector value

associated with it and a child to choose for the

move to make from the root node.

A COOPERATIVE GAME FUNCTION

 A cooperative game is one in which

communication and coalition formation is

allowed between players. A coalition is a subset

of the n players such that a binding agreement

exists between the players. The coalition can be

treated as one player with a strategy, which is

collectively determined. When is a player’s turn

who is in the coalition, it is the coalition’s move.

A coalition structure on an n-person game {P1, .

. . , Pn; U1, . . . , Un} is a partition of {1, . . . , n}.

 For a cooperative game, a set of players,

which is a coalition if they cooperating with each

other, can be treated as one player in the max
n

procedure by summoning the payoffs of the

players. Max
n
 can be applied to the structure

such that each coalition represents a player.

Applying max
n
 to all possible coalition

structures, the minimum payoff in the resulting

payoff vectors for all structures containing that

coalition. This includes a minimum payoff for

each individual player. By subtracting the sum

of the individual minimum payoffs of the players

that make up the coalition from the minimum

payoff for a coalition, the profit for the coalition

is calculated. This profit is notated by m© for

coalition c. These concepts are defined formally

below.

Definition 1:

Let M(c|S) be the payoff to coalition C є S
when the maxn procedure is applied to a
game with coalition structure S.

M(c|S) = Ui (S1…….,Sn) where the Si are
the strategies determined by maxn.

Definition 2:

 The minimum expected payoff (mep)

for a coalition is given by

 Mep(c) = min M(c|S) where c є S.

Definition 3:

 For any coalition c, let

M(c) = mep(c) - mep(i).

An interesting property of this function, which

will be proved next, is that for disjoint coalitions

a and b, m(ab)  m(a) + m(b), where ab is the

union of a and b [also, if a function f(x) satisfies

this inequality, then there exists a game such that

f(c) = m(c) for every coalition, which implies

that the inequality is the only restriction on

m(c)]. A game can be represented by this m-

function.

A1 (1.1.1)

A2 (1.1.1) A3 (1.1.1) A4 (1.1.1)

A3 A3 A3 A3 A3 A3

 (1.1.1) (1.0.8) (0.4.1) (0.0.14) (0.1.16) (0.0.14)

Proceedings of AAAI Symposium on Computer Game Playing, AAAI Spring Symposium,

Stanford University, March 1988

Lemma 1*:

M[ab|(ab)US] >= M[a|(a)(b)US] + M[b|(a)(b)US]

where S is a substructure containing all other

players besides those in coalitions a and b.

Proof:

 Let a consist of players (a1, . . . , ai) and

b consists of players (b1,. . . , bj). Max
n
 on

(a)(b)S determines strategies α, β r for a, b,
and S respectively. Max n on (ab)US finds
the best that a and b can do together , that is,

for є Pa X P b where Pa = Pa1 X … X Pai and
Pb X…. X Pbj.

M[ab|(ab)US] = max [Ua (,r) + Ub(,r)]

  Ua (α, β r) + Ub(α, β r)

  M[ab|(ab)US] + M[b|(a)(b)US]

where Ua (v) = Ua1 (v)b + ……+ Uai (v)b and

Ub(v) = Ub1(v) + …. + Ubj(v) for a vector v

which consists of strategies for all the players.

Theorem 1:

 For disjoint coalitions a and b,

 mep(ab)  mep(a) + mep(b).

Proof:

 For coalition structure S where ab  S,

mep(ab) = minsM(abS) = M(abS’) for some

structure S’ = {ab}T. Assume that the theorem

is false. Then mep(ab)  mep(a) + mep(b).

Since mep(a) and mep(b) are minimums, letting

R = {a}{b}T, the structure with a and b

playing separately, then

 M(aR)  mep(a) and M(bR)  mep(b).

 So, mep(ab)  M(aR) + M(bR) and

M(abS’)  M(aR) + M(bR). But S’ = {ab}T

and R = {a}{b}T, which contradicts Lemma 1.

This proves the theorem.

 From this theorem we know that

for all coalition structures S. This means that the

grand coalition achieves the most overall payoff,

and there may be other structures that also

achieve this maximum sum of payoffs. We also

can deduce that is mep(1, . . . , n) = mep(i), then

mep(ab) = mep(a) + mep(b) for all coalitions a

and b where a . By subtracting indiviual mep(i)

values for i in a and b from the inequality in

Theorem 1, m(ab)  m(a) + m(b). Also, m(1, . . .

n)   m(c) for any structure S.

EARNINGS AND STABILITY

 Given a game in m-function form, a

division of the profits to each player is defined

based on increasing coalition size and is called

the earnings for each player. We use Definition

4 in a recursive definition for E(i,c) to simplify

the notation.

Definition 4:

 For player i and coalition c, let f(i,c) =

E(i,c), for all coalitions c’ where i  c’.

Definition 5:

 The earnings for player i in coalition c

are given recursively as,

 If |c| = 1. 0

E(i.c) = {if |c| > 1.f(I,c) +m(c) - f(j,c)

 |c|

for the example game tree.

Coalition mep(c) m(c) E(I . c)

a 1 0 (0)

b 1 0 (0)

c 1 0 (0)

ab 4 2 (1,1)

ac 6 4 (2,2)

bc 8 6 (3,3)

abc 14 11 (3,4,4)

Proceedings of AAAI Symposium on Computer Game Playing, AAAI Spring Symposium,

Stanford University, March 1988

If, for each player in the coalition, the player’s

earnings are the maximum earnings over all

coalitions which contain that player, the coalition

is defined to be stable. A structure is stable if

each coalition in the structure is stable. In the

example, the coalition and structure (a,b,c) is

stable. Some properties of these functions are:

(1) if a structure is stable for a game, then any

coarser structure is also stable; (2) every game

has at least one stable coalition; and (3) if a

coalition is stable, there is no coalition of equal

or larger size which is a threat to the stability of

the coalition. These properties are discussed in

greater detail below.

 In order to analyze the process of

calculating earnings, the following definitions

will be useful.

Definition 6:

 The level of a coalition, c, is equal to

the cardinality of the coalition, c =

 The total profit P(i) can be thought of as

being accumulater at various levels of coalitions.

From one level l to the next, l + 1, either a

player’s profit is increased by the maximum

equally distributed coalition profit or it is not

increased at all, but it does not decrease. This

monotone non-decreasing function is defined

next.

Definition 7:

 The profit at level l for player a is

defined recursively as

P1(a) = max { P1- 1(a), max E[a.cl(a)] }

Where P1(a) = 0.

 Before a solution algorithm is defined,

some concepts are proven in order to support a

procedure based on stability.

Definition 8:

 A coalition cm is c –stable if, for all

players i  cm . P (i) = E(i,cm) where m  .

Theorem 2:

For any n-person game, for each level = 1…..n,

there exists a coalition that is c –stable.

Proof:

 For k=1 this is trivially true, since

P1(i)=0 for all players. Assume it is true for k, so

there is a coalition c that is ck-stable. We need to

show that there is a coalition ck+1-stable. We

know the E(i,c) = Pk(i) for i  c.

 Case 1: m(ck+1) - Pk(i)  0 for all

ck+1 . This difference is the profit at level k + 1

that is distributed to i  ck+1, so c must be ck+1-

stable.

 Case 2: There exists a c΄ at the k + 1

level such that m(c΄) - Pk(i)  0 and is

maximum over all ck+1. So, each player i  c΄
receives a profit above Pk(i) that is more than in

any other ck+1. Then each of the players i  c΄
gets Pk+1(i) and c΄ is ck+1-stable.

Corollary 1:

 For any n-person game there is at least

one stable coalition.

Proof:

 Take Theorem 2 with = n.

 Theorem 3 states that for a stable

coalition t and any coalition u where u has at

least as many players as t, t u = v and v is not

empty, then the players in u cannot offer to the

players in v more than they can get in t without

going below what the players in u – v could get

in a smaller coalition. Therefore, there is no

coalition of equal or greater size than that of a

stable coalition, which is a threat to the stability.

 We use the following conventions

Definition 9:

 For coalitions c΄ and c where , let the

earnings for coalition c΄ be E(c΄,c) = E(i,c) and

the profit at level for coalition c be

Theorem 3:

 It t is stable, then for

Proceedings of AAAI Symposium on Computer Game Playing, AAAI Spring Symposium,

Stanford University, March 1988

Proof:

 Case 1: u  t

 The inequality can be rewritten as

E(v,t) + E(t - v,t) – P (t - v)  E(v,u)

 + E(u – v,u) – Pu-1(u – v).

Since t is stable,

 E(v,t) = P(i)  E(v,u).

Therefore, what needs to be shown is

E(t – v,t) – P u-1 (t – v)

  E(u – v,u) –P u-1 (t-v).

Since t is stable and P is increasing, E(t – v,t) =

Pn(t – v)  P u-1 (t – v). Therefore,

E(t – v.t) – Pt! - 1 (t – v)  0. If E (u – v.u) –

Pu!-1(u – v)  0, then the inequality is true. By

definition.

E(u - v.u) = Pu!-1(u – v) + |u – v| . m(u) – Pu!-1(u)

 |u|

If A = m(u) – Pu!-1(u)  0, then E(u - v.u) 

 |u|

Pu!-1(u – v). if A > 0,

then E(v,u) = Pu!-1 (v) + |v|. A

But E(v,t) = Pn

(v) = Pv = Pu!-1(v) since t is

stable and |t|  |u| -1, so that E(v,t)  E(v,u)

which is a contradiction since t is stable. So, A 

0 and E(u - v.u) - Pu!-1(u – v)  0 and the

theorem is true for this case.

 Case 2 : |u| = |t| = k.

For i є v, since t is stable, E (i, t)  E(i, u). By the

definition of earnings and substituting k and k -1

where possible.

Pk-1(i) + m(t) – Pk-1(t)  Pk-1(i) + m(u) – Pk-1(u)

 k k

Therefore, m(t) – Pk-1(t)  m(u) - Pk-1(u). Adding

Pk-1(v) to both sides gives m(t) – [Pk-1(t) - Pk-1(v)]

 m(u) - [Pk-1(u) - Pk-1(v)].

Since Pl(a-b) = Pl(a) - Pl(b) from the definition of

Pl.

m(t) - Pk-1(t – v)  m(u) - Pk-1(u– v).

Therefore m(t) – Pt-1(t – v)  m(u) - Pu-1(u– v).

SOLUTION ALGORITHM

 From this sense of stability a solution

algorithm is now defined for cooperative n-

person games. The algorithm begins with a game

in m-function form and produces a coalition

structure and payoff vector.

Solution Algorithm:

(1) If a stable structure exists, then any

minimum solution structure and the

corresponding payoff vector comprise

the solution.

(2) If there is not a stable structure, then

take all stable coalitions and form a

substructure of these players as follows.

If a subset of the stable coalitions is a

partition of another stable coalition,

then delete the largest coalition from the

stable coalition set for the rest of the

calculation.

a. If a stable coalition c has no

players in common with the

other stable coalitions, then the

substructure contains c with its

respective payoffs.

b. For each set of coalitions {c1,

…, cm} that has any players in

common, the union of these

players is a new coalition c in

the substructure with the

folloing pay:

Let c
1
 = 

m

j 1

cj and c
2
= 

m

j 1

cj – c
1

For i є c
1
, i receives P(i) = max E(i,

c), otherwise a player i receives

. ri _ m(c) -  1
)(

cj
jP



  1
)(

cj
jr



 Where rk = P(k) . vk where vk is the

 m

number of stable conditions in which k is

contained. So 1  vk < m.

(3) If all players are not yet acconted for,

apply the above two steps to the

subgame with the remaining players,

calculation new payoff values. Repeat

this until all players have payoffs.

 

Proceedings of AAAI Symposium on Computer Game Playing, AAAI Spring Symposium,

Stanford University, March 1988

(4) If the resulting combined substructures

do not have a sum of payoffs equal to

m(1, ….., n) then let the final solution

structure be {1,….,n} with additional

payoff evenly distributed among the

players. Otherwise, the solution is the

combined substructures and associated

payoffs defined above.

For the example, the solution algorithm

gives {(a, b, c); (2,4,4)} since (a,b,c) is

stable.

Coalition m(c) E(I,c)

a 0 (0)

b 0 (0)

c 0 (0)

d 0 (0)

ab 3 (1.5,1.5)

ac 4 (2,2)

ad 5 (2.5, 2.5)

bc 6 (3,3)

bd 7 (3.5, 3.5)

cd 8 (4,4)

abc 10 (2.5, 3.5, 4)

abd 7 (1.5, 2.5, 3)

acd 9 (2, 3.5, 3.5)

bcd 8.5 (2.5, 3, 3)

abcd 12 (2,3, 3.5, 3.5)

(cd) and (abc) are the stable coalitions. The

solution is the union of these two coalitions

with payoffs calculated in 2b. {(abcd);

(2.2.8, 4, 3.2)}.

CONCLUSIONS

The solution algorithm’s largest asset is that

it works and can be applied to the actual

play of a game. This is not true of most

other game theoretic solutions. This solution

is supported by the properties of stability

and by comparisons to game theoretic

concepts. In its favor is that the solution

from the algorithm is contained in many of

the game theoretic solution sets such as the

core and stable set, and sometimes in the

bargaining set and kernel (see [LuR57] for

definitions). The solution algorithm is

definite and gives a precise solution; it is not

necessary to search through a large solution

space.

The solution algorithm is based on the

assumption that each player will agree to an

equal distribution of profit for the coalition.

The algorithm can be directly applied to a

game or a game with an evaluation function

applied at any level of the game tree. The

solution algorithm can be taken advantage of

by a singular player, such as a computer, to

decide on individual play and to make

recommendations to other players. In

calculating the solution, an overall or global

point of view is adopted, with each player

achieving his or her best possible result so

that everyone might win.

 The results in this work have

implications for and can be applied to areas

in AI, mathematics, economics, social

psychology, and conflict resolution.

ACKNOWLEDGEMENTS

I thank Prof. Keki Irani for his guidance and

suggestions with regard to this work.

REFERENCES

[Jon80] Jones, A.J. , Game Theory:

Mathematical Models of

Conflict, Ellis Horwood, west

Sussex, England, 1980

[LuI86] Luckhardt, C.A. and Irani,

K.B. “An Algorithmic Solution

of N-Person Games” National

Conference on Artificial

Intelligence, Philadelphia, PA,

August 1986.

[LuR57] Luce, R. and Raiffa, H.,

Games and Decisions, John

Wiley & Sons, New York,

1957.

[RiC83] Rich, Elaine, Artificial

Intelligence, McGraw Hill,

US, 1983.

Proceedings of AAAI Symposium on Computer Game Playing, AAAI Spring Symposium,

Stanford University, March 1988

